Кто из ученых был основоположником клеточной теории. История открытия и изучения клетки. Клеточная теория. Как появилась клеточная теория

Клетки животных , растений и бактерии имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни. Клеточная теория дополнялась и редактировалась с каждым разом.

Положения клеточной теории Шлейдена-Шванна

  1. Все животные и растения состоят из клеток.
  2. Растут и развиваются растения и животные путём возникновения новых клеток.
  3. Клетка является самой маленькой единицей живого, а целый организм - это совокупность клеток.

Основные положения современной клеточной теории

  1. Клетка - элементарная единица живого, вне клетки жизни нет.
  2. Клетка - единая система, она включает множество закономерно связанных между собой элементов, представляющих целостное образование, состоящее из сопряжённых функциональных единиц - органоидов.
  3. Клетки всех организмов гомологичны.
  4. Клетка происходит только путём деления материнской клетки, после удвоения её генетического материала.
  5. Многоклеточный организм представляет собой сложную систему из множества клеток, объединённых и интегрированных в системы тканей и органов, связанных друг с другом.
  6. Клетки многоклеточных организмов тотипотентны .

Дополнительные положения клеточной теории

Для приведения клеточной теории в более полное соответствие с данными современной клеточной биологии список её положений часто дополняют и расширяют. Во многих источниках эти дополнительные положения различаются, их набор достаточно произволен.

  1. Клетки прокариот и эукариот являются системами разного уровня сложности и не полностью гомологичны друг другу (см. ниже).
  2. В основе деления клетки и размножения организмов лежит копирование наследственной информации - молекул нуклеиновых кислот («каждая молекула из молекулы»). Положения о генетической непрерывности относится не только к клетке в целом, но и к некоторым из её более мелких компонентов - к митохондриям , хлоропластам , генам и хромосомам .
  3. Многоклеточный организм представляет собой новую систему, сложный ансамбль из множества клеток, объединённых и интегрированных в системе тканей и органов, связанных друг с другом с помощью химических факторов, гуморальных и нервных (молекулярная регуляция).
  4. Клетки многоклеточных тотипотентны, то есть обладают генетическими потенциями всех клеток данного организма, равнозначны по генетической информации, но отличаются друг от друга разной экспрессией (работой) различных генов, что приводит к их морфологическому и функциональному разнообразию - к дифференцировке.

История

XVII век

Линк и Молднхоуэр устанавливают наличие у растительных клеток самостоятельных стенок. Выясняется, что клетка есть некая морфологически обособленная структура. В 1831 году Моль доказывает, что даже такие, казалось бы, неклеточные структуры растений, как водоносные трубки, развиваются из клеток.

Мейен в «Фитотомии» (1830) описывает растительные клетки, которые «бывают или одиночными, так что каждая клетка представляет собой особый индивид, как это встречается у водорослей и грибов, или же, образуя более высоко организованные растения, они соединяются в более и менее значительные массы». Мейен подчёркивает самостоятельность обмена веществ каждой клетки.

В 1831 году Роберт Броун описывает ядро и высказывает предположение, что оно является постоянной составной частью растительной клетки.

Школа Пуркинье

В 1801 году Вигиа ввёл понятие о тканях животных, однако он выделял ткани на основании анатомического препарирования и не применял микроскопа. Развитие представлений о микроскопическом строении тканей животных связано прежде всего с исследованиями Пуркинье, основавшего в Бреславле свою школу.

Пуркинье и его ученики (особенно следует выделить Г. Валентина) выявили в первом и самом общем виде микроскопическое строение тканей и органов млекопитающих (в том числе и человека). Пуркинье и Валентин сравнивали отдельные клетки растений с частными микроскопическими тканевыми структурами животных, которые Пуркинье чаще всего называл «зёрнышками» (для некоторых животных структур в его школе применялся термин «клетка»).

В 1837 году Пуркинье выступил в Праге с серией докладов. В них он сообщил о своих наблюдениях над строением желудочных желёз, нервной системы и т. д. В таблице, приложенной к его докладу, были даны ясные изображения некоторых клеток животных тканей. Тем не менее установить гомологию клеток растений и клеток животных Пуркинье не смог:

  • во-первых, под зёрнышками он понимал то клетки, то клеточные ядра;
  • во-вторых, термин «клетка» тогда понимался буквально как «пространство, ограниченное стенками».

Сопоставление клеток растений и «зёрнышек» животных Пуркинье вёл в плане аналогии, а не гомологии этих структур (понимая термины «аналогия» и «гомология» в современном смысле).

Школа Мюллера и работа Шванна

Второй школой, где изучали микроскопическое строение животных тканей, была лаборатория Иоганнеса Мюллера в Берлине. Мюллер изучал микроскопическое строение спинной струны (хорды); его ученик Генле опубликовал исследование о кишечном эпителии, в котором он дал описание различных его видов и их клеточного строения.

Здесь были выполнены классические исследования Теодора Шванна, заложившие основание клеточной теории. На работу Шванна оказала сильное влияние школа Пуркинье и Генле . Шванн нашёл правильный принцип сравнения клеток растений и элементарных микроскопических структур животных. Шванн смог установить гомологию и доказать соответствие в строении и росте элементарных микроскопических структур растений и животных.

На значение ядра в клетке Шванна натолкнули исследования Матиаса Шлейдена, у которого в 1838 году вышла работа «Материалы по фитогенезу». Поэтому Шлейдена часто называют соавтором клеточной теории. Основная идея клеточной теории - соответствие клеток растений и элементарных структур животных - была чужда Шлейдену. Он сформулировал теорию новообразования клеток из бесструктурного вещества, согласно которой сначала из мельчайшей зернистости конденсируется ядрышко, вокруг него образуется ядро, являющееся образователем клетки (цитобластом). Однако эта теория опиралась на неверные факты.

В 1838 году Шванн публикует 3 предварительных сообщения, а в 1839 году появляется его классическое сочинение «Микроскопические исследования о соответствии в структуре и росте животных и растений», в самом заглавии которого выражена основная мысль клеточной теории:

  • В первой части книги он рассматривает строение хорды и хряща, показывая, что их элементарные структуры - клетки развиваются одинаково. Далее он доказывает, что микроскопические структуры других тканей и органов животного организма - это тоже клетки, вполне сравнимые с клетками хряща и хорды.
  • Во второй части книги сравниваются клетки растений и клетки животных и показывается их соответствие.
  • В третьей части развиваются теоретические положения и формулируются принципы клеточной теории. Именно исследования Шванна оформили клеточную теорию и доказали (на уровне знаний того времени) единство элементарной структуры животных и растений. Главной ошибкой Шванна было высказанное им вслед за Шлейденом мнение о возможности возникновения клеток из бесструктурного неклеточного вещества.

Развитие клеточной теории во второй половине XIX века

С 1840-х годов XIX века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки - цитологию.

Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).

В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток (Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:

Клетка - это комочек протоплазмы с содержащимся внутри ядром.

В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы). Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и Н. И. Желе.

Деление тканевых клеток у животных было открыто в 1841 г. Ремаком . Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер). Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:

«Omnis cellula ех cellula».
Каждая клетка из клетки.

В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии» Вирхова (1858).

Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:

  • Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.
  • Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.
  • Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.

XX век

Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки - с гражданами. Подобная теория противоречила принципу целостности организма.

Механистическое направление в развитии клеточной теории подверглось острой критике. В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов. Позднее клеточная теория подверглась критическим оценкам со стороны других авторов. Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г. Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).

В 1930-х годах советский биолог О. Б. Лепешинская , основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б. Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».

Современная клеточная теория

Современная клеточная теория исходит из того, что клеточная структура является главнейшей формой существования жизни, присущей всем живым организмам, кроме вирусов . Совершенствование клеточной структуры явилось главным направлением эволюционного развития как у растений, так и у животных, и клеточное строение прочно удержалось у большинства современных организмов.

Вместе с тем должны быть подвергнуты переоценке догматические и методологически неправильные положения клеточной теории:

  • Клеточная структура является главной, но не единственной формой существования жизни. Неклеточными формами жизни можно считать вирусы. Правда, признаки живого (обмен веществ, способность к размножению и т. п.) они проявляют только внутри клеток, вне клеток вирус является сложным химическим веществом. По мнению большинства учёных, в своём происхождении вирусы связаны с клеткой, являются частью её генетического материала, «одичавшими» генами.
  • Выяснилось, что существует два типа клеток - прокариотические (клетки бактерий и архебактерий), не имеющие отграниченного мембранами ядра, и эукариотические (клетки растений, животных, грибов и протистов), имеющие ядро, окружённое двойной мембраной с ядерными порами. Между клетками прокариот и эукариот существует и множество иных различий. У большинства прокариот нет внутренних мембранных органоидов, а у большинства эукариот есть митохондрии и хлоропласты. В соответствии с теорией симбиогенеза, эти полуавтономные органоиды - потомки бактериальных клеток. Таким образом, эукариотическая клетка - система более высокого уровня организации, она не может считаться целиком гомологичной клетке бактерии (клетка бактерии гомологична одной митохондрии клетки человека). Гомология всех клеток, таким образом, свелась к наличию у них замкнутой наружной мембраны из двойного слоя фосфолипидов (у архебактерий она имеет иной химический состав, чем у остальных групп организмов), рибосом и хромосом - наследственного материала в виде молекул ДНК, образующих комплекс с белками. Это, конечно, не отменяет общего происхождения всех клеток, которое подтверждается общностью их химического состава.
  • Клеточная теория рассматривала организм как сумму клеток, а жизнепроявления организма растворяла в сумме жизнепроявлений составляющих его клеток. Этим игнорировалась целостность организма, закономерности целого подменялись суммой частей.
  • Считая клетку всеобщим структурным элементом, клеточная теория рассматривала как вполне гомологичные структуры тканевые клетки и гаметы, протистов и бластомеры. Применимость понятия клетки к протистам является дискуссионным вопросом клеточного учения в том смысле, что многие сложно устроенные многоядерные клетки протистов могут рассматриваться как надклеточные структуры. В тканевых клетках, половых клетках, протистах проявляется общая клеточная организация, выражающаяся в морфологическом выделении кариоплазмы в виде ядра, однако эти структуры нельзя считать качественно равноценными, вынося за пределы понятия «клетка» все их специфические особенности. В частности, гаметы животных или растений - это не просто клетки многоклеточного организма, а особое гаплоидное поколение их жизненного цикла, обладающее генетическими, морфологическими, а иногда и экологическими особенностями и подверженное независимому действию естественного отбора. В то же время практически все эукариотические клетки, несомненно, имеют общее происхождение и набор гомологичных структур - элементы цитоскелета, рибосомы эукариотического типа и др.
  • Догматическая клеточная теория игнорировала специфичность неклеточных структур в организме или даже признавала их, как это делал Вирхов, неживыми. В действительности, в организме кроме клеток есть многоядерные надклеточные структуры (синцитии , симпласты) и безъядерное межклеточное вещество, обладающее способностью к метаболизму и потому живое. Установить специфичность их жизнепроявлений и значение для организма является задачей современной цитологии. В то же время и многоядерные структуры, и внеклеточное вещество появляются только из клеток. Синцитии и симпласты многоклеточных - продукт слияния исходных клеток, а внеклеточное вещество - продукт их секреции, то есть образуется оно в результате метаболизма клеток.
  • Проблема части и целого разрешалась ортодоксальной клеточной теорией метафизически: всё внимание переносилось на части организма - клетки или «элементарные организмы».

Целостность организма есть результат естественных, материальных взаимосвязей, вполне доступных исследованию и раскрытию. Клетки многоклеточного организма не являются индивидуумами, способными существовать самостоятельно (так называемые культуры клеток вне организма представляют собой искусственно создаваемые биологические системы). К самостоятельному существованию способны, как правило, лишь те клетки многоклеточных, которые дают начало новым особям (гаметы, зиготы или споры) и могут рассматриваться как отдельные организмы. Клетка не может быть оторвана от окружающей среды (как, впрочем, и любые живые системы). Сосредоточение всего внимания на отдельных клетках неизбежно приводит к унификации и механистическому пониманию организма как суммы частей.

Предпосылками создания клеточной теории были изобретение и усовершенствование микроскопа и открытие клеток (1665 г., Р. Гук – при изучении среза коры пробкового дерева, бузины и др.). Работы известных микроскопистов: М. Мальпиги, Н. Грю, А. ван Левенгука – позволили увидеть клетки растительных организмов. А. ван Левенгук обнаружил в водеоднокле-точные организмы. Сначала изучалось клеточное ядро. Р. Браун описал ядро растительной клетки. Я. Э. Пуркине ввел понятие протоплазмы – жидкого студенистого клеточного содержимого.

Немецкий ботаник М. Шлейден первым пришел к выводу, что в любой клетке есть ядро. Основателем КТ считается немецкий биолог Т. Шванн (совместно с М. Шлейденом), который в 1839 г. опубликовал труд «Микроскопические исследования о соответствии в структуре и росте животных и растений». Его положения:

1) клетка – главная структурная единица всех живых организмов (как животных, так и растительных);

2) если в каком-либо образовании, видимом под микроскопом, есть ядро, то его можно считать клеткой;

3) процесс образования новых клеток обусловливает рост, развитие, дифференцировку растительных и животных клеток.

Дополнения в клеточную теорию внес немецкий ученый Р. Вирхов, который в 1858 г. опубликовал свой труд «Целлюлярная патология». Он доказал, что дочерние клетки образуются путем деления материнских клеток: каждая клетка из клетки. В конце XIX в. были обнаружены митохондрии, комплекс Гольджи, пластиды в растительных клетках. После окрашивания делящихся клеток специальными красителями были обнаружены хромосомы. Современные положения КТ

1. Клетка – основная единица строения и развития всех живых организмов, является наименьшей структурной единицей живого.

2. Клетки всех организмов (как одно-, так и многоклеточных) сходны по химическому составу, строению, основным проявлениям обмена веществ и жизнедеятельности.

3. Размножение клеток происходит путем их деления (каждая новая клетка образуется при делении материнской клетки); в сложных многоклеточных организмах клетки имеют различные формы и специализированы в соответствии с выполняемыми функциями. Сходные клетки образуют ткани; из тканей состоят органы, которые образуют системы органов, они тесно взаимосвязаны и подчинены нервным и гуморальным механизмам регуляции (у высших организмов).

Значение клеточной теории

Отало ясно, что клетка – важнейшая составляющая часть живых организмов, их главный морфофизиоло-гический компонент. Клетка – это основа многоклеточного организма, место протекания биохимических и физиологических процессов в организме. На клеточном уровне в конечном итоге происходят все биологические процессы. Клеточная теория позволила сделать вывод о сходстве химического состава всех клеток, общем плане их строения, что подтверждает филогенетическое единство всего живого мира.

2. Жизнь. Свойства живой материи

Жизнь – это макромолекулярная открытая система, которой свойственны иерархическая организация, способность к самовоспроизведению, самосохранению и саморегуляции, обмен веществ, тонко регулируемый поток энергии.

Свойства живых структур:

1) самообновление. Основу обмена веществ составляют сбалансированные и четко взаимосвязанные процессы ассимиляции (анаболизм, синтез, образование новых веществ) и диссимиляции (катаболизм, распад);

2) самовоспроизведение. В связи с этим живые структуры постоянно воспроизводятся и обновляются, не теряя при этом сходства с предыдущими поколениями. Нуклеиновые кислоты способны хранить, передавать и воспроизводить наследственную информацию, а также реализовывать ее через синтез белков. Информация, хранимая на ДНК, переносится на молекулу белка с помощью молекул РНК;

3) саморегуляция. Базируется на совокупности потоков вещества, энергии и информации через живой организм;

4) раздражимость. Связана с передачей информации извне в любую биологическую систему и отражает реакцию этой системы на внешний раздражитель. Благодаря раздражимости живые организмы способны избирательно реагировать на условия внешней среды и извлекать из нее только необходимое для своего существования;

5) поддержание гомеостаза – относительного динамического постоянства внутренней среды организма, физико-химических параметров существования системы;

6) структурная организация – упорядоченность, живой системы, обнаруживается при исследовании – биогеоценозов;

7) адаптация – способность живого организма постоянно приспосабливаться к изменяющимся условиям существования в окружающей среде;

8) репродукция (воспроизведение). Так как жизнь существует в виде отдельных живых системы, а существование каждой такой системы строго ограничено во времени, поддержание жизни на Земле связано с репродукцией живых систем;

9) наследственность. Обеспечивает преемственность между поколениями организмов (на основе потоков информации). Благодаря наследственности из поколения в поколение передаются признаки, которые обеспечивают приспособление к среде обитания;

10) изменчивость – за счет изменчивости живая система приобретает признаки, ранее ей несвойственные. В первую очередьизменчивостьсвязанасошиб-ками при репродукции: изменения в структуре нуклеиновых кислот приводят к появлению новой наследственной информации;

11) индивидуальное развитие (процесс онтогенеза) – воплощение исходной генетической информации, заложенной в структуре молекул ДНК, в рабочие структуры организма. В ходе этого процесса проявляется такое свойство, как способность к росту, что выражается в увеличении массы тела и его размеров;

12) филогенетическое развитие. Базируется на прогрессивном размножении, наследственности, борьбе за существование и отборе. В результате эволюции появилось, огромное количество видов;

13) дискретность (прерывистость) и в то же время целостность. Жизнь представлена совокупностью отдельных организмов, или особей. Каждый организм, в свою очередь, также дискретен, поскольку состоит из совокупности органов, тканей и клеток.

В 1838 - 1839 гг. два немецких ученых - ботаник М. Шлейден и зоолог Т. Шванн, собрали все доступные им сведения и наблюдения в единую теорию, утверждавшую, что клетки, содержащие ядра, представляют собой структурную и функциональную основу всех живых существ.

Спустя примерно 20 лет после провозглашения Шлейденом и Шванном клеточной теории другой немецкий ученый - врач Р. Вирхов сделал очень важное обобщение: клетка может возникнуть только из предшествующей клетки. Академик Российской Академии наук Карл Бэр открыл яйцеклетку млекопитающих и установил, что все многоклеточные организмы начинают свое развитие из одной клетки и этой клеткой является зигота.

Современная клеточная теория включает следующие основные положения:

Клетка - основная единица строения и развития всех живых организмов, наименьшая единица живого.

Клетки всех одноклеточных и многоклеточных организмов сходны (гомологичны) по своему строению, химическому составу, основным проявлениям жизнедеятельности и обмену веществ.

Размножение клеток происходит путем их деления, т.е. каждая новая клетка образуется в результате деления исходной (материнской) клетки. Положения о генетической непрерывности относятся не только к клетке в целом, но и к некоторым из ее более мелких компонентов - к генам и хромосомам, а также к генетическому механизму, обеспечивающему передачу вещества наследственности следующему поколению,

В сложных многоклеточных организмах клетки специализированы по выполняемой им функции и образуют ткани; из тканей состоят органы, которые тесно связаны между собой и подчинены нервным и гуморальным системам регуляции.

3 Типы существующих клеток и их общая структура.

Все клетки делят на две общие группы: -- одну группу составляют бактерии и цианобактерии, которых называют доядерными (прокариотическими), так как у них нет оформленного ядра и некоторых других органоидов; -- другую группу (их большинство) составляютэукариоты , клетки которых содержат ядра и различные органоиды, выполняющие специфические функции. (см. Классификацию живых организмов по Маргелису и Шварцу (Рисунок 2)

Прокариотическая клетка - самая простая и, судя по данным палеонтологической летописи, это, вероятно, первая клетка, возникшая 3-3,5 млрд лет тому назад. Она имеет малые размеры (например, клетки микоплазмы достигают 0,10-0,25 мкм).

Эукариотическая клетка организована гораздо сложнее прокариотической. Из эукариотических клеток в данном курсе изучаются животная и растительная клетки,клетка плесени и клетка дрожжей. Представителями прокариотов является бактериальная клетка.

Таблица 1. Сопоставление некоторых черт прокариотной и эукариотной клеточной организации

Признак Прокариотная клетка Эукариотная клетка
Организация генетического материала нуклеоид (ДНК не отделена от цитоплазмы мембраной), состоящий из одной хромосомы; митоз отсутствует ядро (ДНК отделена от цитоплазмы ядерной оболочкой), содержащее больше одной хромосомы; деление ядра путем митоза
Локализация ДНК в нуклеоиде и плазмидах, не ограниченных элементарной мембраной в ядре и некоторых органеллах
Цитоплазматически органеллы отсутствуют имеются
Рибосомы в цитоплазме 70S-типа 80S-типа
Цитоплазматические органеллы отсутствуют имеются
Движение цитоплазмы отсутствует часто обнаруживается
Клеточная стенка (там, где она имеется) в большинстве случаев содержит пептидогликан пептидогликан отсутствует
Жгутики нить жгутика построена из белковых субъединиц, образующих спираль каждый жгутик содержит набор микротрубочек, собранны в группы: 2·9-2

Клетка эукариотов состоит из трех неразрывно связанных между собой частей: плазматической мембраны (плазмалеммы), цитоплазмы и ядра. У растительной клетки поверх мембраны имеется наружная стенка из целлюлозы и других материалов, выполняющих важную роль, которая представляет собой внешний каркас, защитную оболочку, обеспечивает тургор растительных клеток, пропускает воду, соли, молекулы многих органических веществ. У большинства клеток (особенно животных) наружная сторона мембраны покрыта слоем полисахаридов и гликопротеидов (гликокаликс). Гликокаликс - очень тонкий, эластичный слой (в световой микроскоп не виден). Он, как и целлюлозная стенка растений, осуществляет прежде всего функцию непосредственной связи клеток с внешней средой, однако, он не обладает опорной функцией, как у стенки растительной клетки. Отдельные участки мембраны и гликокаликса могут дифференцироваться и превращаться в микроворсинки (обычно на поверхности клетки, которая контактирует с окружающей средой), межклеточные соединения и связи, находящиеся между клетками ткани и имеющими различную структуру. Одни из них играют механическую роль (межкле-точные соединения), а другие участвуют в межклеточных обменных процессах, изменяя электрический потенциал мембраны. Итак, каждая клетка состоит из цитоплазмы и ядра, снаружи она покрыта мембраной (плазмолеммой), разграничивающей одну клетку от соседних. Пространство между мембранами соседних клеток заполнено жидким межклеточным веществом.

Между клетками растений и животных нет принципи­альных различий по структуре и функциям. Некоторые отличия касаются лишь строения их мембран, клеточных стенок и отдельных органелл. На рисунке можно легко обнаружить отличия животной и растительной клеток

Как бы ни были сходны животная и растительная клетки –между ними имеются значительные отличия. Основным отличием является отсутствие в растительной клетке клеточного центра с центриолями, который имеется в животной клетке и вакуолей с водой, которые занимают Существенным отличием названных клеток является присутствие в растительной клетке хлоропластов, которые обеспечивают фотосинтез растений и другие функции.

достаточно большое пространство в клетке и обеспечивают этим тургор растений.

Рисунок 25 – Отличия животной и растительной клетки

В таблице 2 представлены отличительные признаки растительных и животных клеток.

4 Строение биологических мембран.

Основной компонент мембран – фосфолипиды - образуются при присоединении к глицерину вместо третьей жирной кислоты – фосфорной кислоты


Рисунок 3 – Липид (схематичное изображение)

Жирные кислоты представляют из себя длинную или короткую цепочку из атомов углерода и водорода, иногда содержащие двойные связи. Они обладают выраженными гидрофобными свойствами.

Рисунок 4 - Схема жирных кислот

Фосфолипиды, являясь по своей химической структуре сложным эфиром многоатомных спиртов с жирными кислотами содержат в качестве добавочных структурных элементов остаток фосфорной кислоты и гидрофильное основание. Головка фосфолипида, включая кроме остатка спирта -глицерида, остаток фосфорной кислоты и основание, обладает выраженными гидрофильными свойствами.

В силу выраженной полярности, фосфолипиды в воде образуют структуру, представленную на рисунке 5.

Рисунок 5 - Капля жира в воде (А) и фосфолипидный бислой мембран (В)

Липиды и белки. В основе мембраны лежит двойной слой липидов и фосфолипидов. Хвосты молекул обращены в двойном слое друг к другу, а полярные головки остаются снаружи, образуя гидрофильные поверхности.

Молекулы белков не образуют сплошного слоя, (рисунок 6) они располагаются в слое липидов, погружаясь на разную глубину (есть периферические белки, часть белков пронизывает мембрану насквозь, часть погружена в слой липидов) и выполняя различные функции. Молекулы белков и липидов подвижны, что обеспечивает динамичность плазматической мембраны.

Гликолипиды и холестерол. В мембранах содержатся также гликолипиды и холестерол. Гликолипиды - это липиды с присоединенными к ним углеводами. Как и у фосфолипидов, у гликолипидов имеются полярные головы и неполярные хвосты. Холестерол близок к липидам; в его молекуле также имеется полярная часть.

Гидрофильная головка фосфолипида

Гидрофобный хвост фосфолипида

Рисунок 6 - Схема фосфолипидного слоя мембраны с встроенными белками.

В 1972 г. Сингер и Николсон предложилижидкостно-мозаичную модель мембраны (рисунок 7), согласно которой белковые молекулы плавают в жидком фосфолипидном бислое. Они образуют в нем как бы своеобразную мозаику, но поскольку бислой этот жидкий, то и сам мозаичный узор не жестко фиксирован; белки могут менять в нем свое положение. Покрывающая клетку тонкая мембрана напоминает пленку мыльного пузыря - она тоже все время «переливается». Ниже суммированы известные данные, касающиеся строения и свойств клеточных мембран.

Рисунок 7 - А. Трехмерное изображение жидкостно-мозаичной модели мембраны. Б. Плосткостное изображение. Гликопротеины и гликолипиды связаны только с наружной поверхностью мембраны.

1. Толщина мембран составляет около 7 нм.

2. Основная структура мембраны - фосфолипидный бислой.

3. Гидрофильные головы фосфолипидных молекул обращены наружу - в сторону водного содержимого клетки и в сторону наружной водной среды.

4. Гидрофобные хвосты обращены внутрь - они образуют гидрофобную внутреннюю часть бислоя.

5. Фосфолипиды находятся в жидком состоянии и быстро диффундируют внутри бислоя.

6. Жирные кислоты, образующие хвосты фосфолипидных молекул, бывают насы­щенными и ненасыщенными. В ненасыщенных кислотах имеются изломы, что делает упаковку бислоя более рыхлой. Следовательно, чем больше степень ненасыщенности, тем более жидкую консистенцию имеет мембрана.

7. Большая часть белков плавает в жидком фосфолипидном бислое, образуя в нем своеобразную мозаику, постоянно меняющую свой узор.

8. Белки сохраняют связь с мембраной, поскольку в них есть участки, состоящие из гидрофобных аминокислот, взаимодействующих с гидрофобными хвостами фосфолипидов: то есть – они склеиваются, а вода из этих мест выталкивается. Другие участки белков гидрофильны. Они обращены либо к окружению клетки, либо к ее содержимому, т. е. к водной среде.

9. Некоторые мембранные белки лишь частично погружены в фосфолипидный бислой, тогда как другие пронизывают его насквозь.

10. К некоторым белкам и липидам присоединены разветвленные олигосахаридные цепочки, играющие роль антенн. Такие соединения называются соответственно гликопротеинами и гликолипидами.

11. В мембранах содержится также холестерол. Подобно ненасыщенным жирным кислотам он нарушает плотную упаковку фосфолипидов и делает их более жидкими. Это важно для организмов, живущих в холодной среде, где мембраны могли бы затвердевать. Холестерол делает мембраны также более гибкими и вместе с тем более прочными. Без него они бы легко разрывались.

12. Две стороны мембраны, наружная и внутренняя, различаются и по составу, и по функциям.

Фосфолипидный бислой, как уже было сказано, составляет основу структуры мембраны. Он также ограничивает проникновение полярных молекул и ионов в клетку и выход их из нее. Ряд функций выполняют и другие компоненты мембран.

5 Функции биологических мембран. Транспорт через мембрану

Мембранные структуры являются «ареной» важнейших жизненных процессов, причем двухслойное строение мембранной системы значительно увеличивает площадь «арены». Кроме того, мембранные структуры обеспечивают отделение клеток от окружающей среды. Помимо мембран общего назначения в клетках существуют внутренние мембраны, которые ограничивают клеточные органеллы.

Регулируя обмен между клеткой и средой, мембраны обладают рецепторами, которые воспринимают внешние стимулы. В частности, примерами восприятия внешних стимулов являются восприятие света, движение бактерий к источнику пищи, ответ клеток-мишеней на гормоны, например, на инсулин. Некоторые из мембран одновременно сами генерируют сигналы (химические и электрические). Замечательной особенностью мембран является то, что на них происходит превращение энергии. В частности, на внутренних мембранах хлоропластов происходит фотосинтез, а на внутренних мембранах митохондрий осуществляется окислительное фосфорилирование .

Компоненты мембран находятся в движении. Построенным, главным образом из белков и липидов, мембранам присущи различные перестройки, что определяет раздражимость клеток – важнейшее свойство живого.

С конца прошлого века известно, что клеточные мембраны ведут себя не так, как полупроницаемые мембраны, способные пропускать лишь воду и другие малые молекулы, например молекулы газов. Клеточные мембраны обладаютизбирательной проницаемостью: через них медленно диффундируют глюкоза, аминокислоты, жир­ные кислоты, глицерол и ионы, причем сами мембраны активно регулируют этот процесс - одни вещества пропускают, а другие нет.

Т. Шванном. Согласно этой теории, всем организмам присуще клеточное строение. Клеточная теория утверждала единство животного и растительного мира, наличие единого элемента тела живого организма - клетки. Как и всякое крупное научное обобщение, клеточная теория не возникла внезапно: ей предшествовали отдельные открытия различных исследователей.

Открытие клетки принадлежит английскому естествоиспытателю Р. Гуку, который в 1665 г. впервые рассмотрел тонкий срез пробки под микроскопом. На срезе было видно, что пробка имеет ячеистое строение, подобно пчелиным сотам. Эти ячейки Р. Гук назвал клетками. Вслед за Гуком клеточное строение растений подтвердили итальянский биолог и врач М. Мальпиги (1675) и английский ботаник Н. Грю (1682). Их внимание привлекли форма клеток и строение их оболочек. В результате было дано представление о клетках как о «мешочках» или «пузырьках», наполненных «питательным соком».

Дальнейшее усовершенствование микроскопа и интенсивные микроскопические исследования привели к установлению французским ученым Ш. Бриссо-Мирбе (1802, 1808) того факта, что все растительные организмы образованы тканями, которые состоят из клеток. Еще дальше в обобщениях пошел Ж. Б. Ламарк (1809), который распространил идею Бриссо-Мирбе о клеточном строении и на животные организмы.

В начале XIX в. предпринимаются попытки изучения внутреннего содержимого клетки. В 1825 г. чешский ученый Я. Пуркине открыл ядро в яйцеклетке птиц. В 1831 г. английский ботаник Р. Броун впервые описал ядро в клетках растений, а в 1833 г. он пришел к выводу, что ядро является обязательной частью растительной клетки. Таким образом, в это время меняется представление о строении клетки : главным в ее организации стали считать не клеточную стенку , а содержимое.

Наиболее близко к формулировке клеточной теории подошел немецкий ботаник М. Шлейден, который установил, что тело растений состоит из клеток.

Многочисленные наблюдения относительно строения клетки, обобщение накопленных данных позволили Т. Шванну в 1839 г. сделать ряд выводов, которые впоследствии назвали клеточной теорией. Ученый показал, что все живые организмы состоят из клеток, что клетки растений и животных принципиально схожи между собой.

Клеточная теория получила дальнейшее развитие в работах немецкого ученого Р. Вирхова (1858), который предположил, что клетки образуются из предшествующих материнских клеток. В 1874 г. русским ботаником И. Д. Чистяковым, а в 1875 г. польским ботаником Э. Страсбургером было открыто деление клетки - митоз , и, таким образом, подтвердилось предположение Р. Вирхова.

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства живой природы. Клеточная теория оказала значительное влияние на развитие биологии как науки, послужила фундаментом для развития таких дисциплин, как эмбриология , гистология и физиология . Она позволила создать основы для понимания жизни, индивидуального развития организмов, для объяснения эволюционной связи между ними. Основные положения клеточной теории сохранили свое значение и сегодня, хотя более чем за сто пятьдесят лет были получены новые сведения о структуре, жизнедеятельности и развитии клетки.

Открытие и изучение клетки стало возможным благодаря изобретению микроскопа и усовершенствованию методов микроскопических исследований.

Англичанин Роберт Гук первым в 1665 г.с помощью увеличительных линз наблюдал деление тканей коры пробкового дуба на ячейки (клетки). Хотя выснилось, что открыл он не клетки (в собственном понятии термина), а лишь внешние оболочки растительных клеток. Позже мир одноклеточных организмов был открыт А. Левенгуком. Он первый увидел животные клетки (эритроциты). Позже клетки животных описал Ф. Фонтана,но эти исследования в то время не привели к понятию универсальности клеточного строения, потому что не было чётких представлений о том, что же такое клетка.

Р. Гук считал, что клетки – это пустоты или поры между волокнами растений. Позже М. Мальпиги, Н. Грю и Ф. Фонтана, наблюдая растительные объекты под микроскопом, подтвердили данные Р. Гука, назвав клетки «пузырьками». Значительный вклад в развитие микроскопических исследований растительных и животных организмов сделал А. Левенгук. Данные своих наблюдений он опубликовал в книге «Тайны природы».

Иллюстрации к этой книге чётко демонстрируют клеточные структуры растительных и животных организмов. Однако А.Левенгук не представлял описанные морфологические структуры как клеточные образования. Его исследования имели случайный, не систематизированный характер. Г.Линк, Г. Травенариус и К. Рудольф в начале $XIX$ столетия своими исследованиями показали, что клетки – это не пустоты, а самостоятельные ограниченные стенками образования. Было установлено, что клетки имеют содержимое, которое Я Пуркинье назвал протоплазмой. Р. Броун описал ядро, как постоянную часть клеток.

Т. Шванн проанализировал данные литературы о клеточном строении растений и животных, сопоставив их с собственными исследованиями и опубликовал результаты в своей работе. В ней Т. Шванн показал, что клетки являются элементарными живыми структурными единицами растительных и животных организмов. Они имеют общий план строения и образуются единым путём. Эти тезисы и стали основой клеточной теории.

Исследователи длительное время занимались накоплением наблюдений за строением одноклеточных и многоклеточных организмов, прежде, чем сформулировать положения КТ. Именно в этот период были более развиты и усовершенствования различные оптические методы исследования.

Клетки делят на ядерные (эукариотические) и безъядерные (прокариотические). Животные организмы построены из эукариотических клеток. Лишь красные клетки крови млекопитающих (эритроциты) не имеют ядер. Они теряют их в процессе своего развития.

Определение клетки изменялось в зависимости от познания их строения и функции.

Определение 1

По современным данным, клетка – это ограниченная активной оболочкой, структурно упорядоченная система биополимеров, которые образуют ядро и цитоплазму, участвуют в единой совокупности процессов метаболизма и обеспечивают поддержание и воспроизведение системы в целом.

Клеточная теория является обобщённым представлением о строении клетки как единицы живого, о размножении клеток и их роли в формировании многоклеточных организмов.

Прогресс в изучении клетки связан с развитием микроскопии в $XIX$ веке. В то время представление о строении клетки изменилось: за основу клетки принималась не клеточная оболочка, а её содержимое – протоплазма. Тогда же открыли ядро как постоянный элемент клетки.

Сведения о тонком строении и развитии тканей и клеток давали возможность сделать обобщение. Такое обобщение сделал в 1839 г. немецкий биолог Т. Шванн в виде сформулированной им клеточной теории. Он утверждал, что клетки и животных, и растений принципиально похожи. Развил и обобщил эти представления немецкий патолог Р. Вирхов. Он выдвинул важное положение, которое состояло в том, что клетки возникают только из клеток путём размножения.

Основные положения клеточной теории

Т. Шванн в 1839 г. в своей работе «Микроскопические исследования о соответствии в строении и произрастании животных и растений» сформулировал основные положения клеточной теории (позже они не раз уточнялись и дополнялись.

Клеточная теория содержит такие положения:

  • клетка – основная элементарная единица строения, развития и функционирования всех живых организмов, мельчайшая единица живого;
  • клетки всех организмов гомологичны (подобные) (гомологичны)по своему химическому строению, основным проявлениям жизненных процессов и обмену веществ;
  • размножаются клетки путём деления - новая клетка образуется в результате деления изначальной (материнской) клетки;
  • у сложных многоклеточных организмов клетки специализируются по функциям, которые они выполняют, и образуют ткани; из тканей построены органы, тесно взаимосвязанные межклеточными, гуморальными и нервными формами регуляции.

Интенсивное развитие цитологии в $XIX$ и $XX$ столетиях подтвердило основные положения КТ и обогатило её новыми данными о строении и функциях клетки. В этот период было отброшено отдельные неправильные тезисы клеточной теории Т. Шванна, а именно, что отдельная клетка многоклеточного организма может функционировать самостоятельно, что многоклеточный организм является простой совокупностью клеток, а развитие клетки происходит из неклеточной «бластемы».

В современном виде клеточная теория включает такие основные положения:

  1. Клетка – это наименьшая единица живого, которой присущи все свойства, которые отвечают определению «живого». Это обмен веществ и энергии, движение, рост, раздражительность, адаптация, изменчивость, репродукция, старение и смерть.
  2. Клетки различных организмов имеют общий план строения, который обусловлен подобностью общих функций, направленных на поддержание жизни собственно клеток и их размножение. Разнообразие форм клеток является результатом специфичности выполняемых ими функцуий.
  3. Размножаются клетки в результате деления исходной клетки с предыдущим воспроизведением её генетического материала.
  4. Клетки являются частями целостного организма, их развитие, особенности строения и функции зависят от всего организма, что является последствием взаимодействия в функциональных системах тканей, органов, аппаратов и систем органов.

Замечание 1

Клеточная теория, которая соответствует современному уровню знаний в биологии, по многим положениям кардинально отличается от представлений о клетке не только начала ХІХ века, когда Т. Шванн сформулировал её впервые, но даже средины ХХ века. В наше время это – система научных взглядов, которая приобрела вид теорий, законов и принципов.

Основные положения КТ сохранили своё значение и до сегодняшнего дня, хотя более чем за 150 лет было получено новые сведения о структуре, жизнедеятельности и развитии клеток.

Значение клеточной теории

Значение клеточной теории в развитии науки состоит в том, что благодаря ей стало понятно, что клетка является важнейшей составляющей частью всех организмов, их главным «строительным» компонентом. Так как развитие каждого организма начинается с одной клетки (зиготы), то клетка является и эмбриональной основой многоклеточных организмов.

Создание клеточной теории стало, одним из решающих доказательств единства всей живой природы, важнейшим событием биологической науки.

Клеточная теория способствовала развитию эмбриологии, гистологии и физиологии. Она дала основу для материалистического понятия жизни, для объяснения эволюционной взаимосвязи организмов, для понятия сущности онтогенеза.

Основные положения КТ актуальны и сегодня, хотя за период более чем 100 лет естествоиспытатели получили новые сведения о строении, развитии и жизнедеятельности клетки.

Клетка является основой всех процессов в организме: и биохимических, и физиологических, поскольку именно на клеточном уровне происходят все эти процессы. Благодаря клеточной теории возможным стало прийти к заключению о подобности в химическом составе всех клеток и ещё раз убедиться в единстве всего органического мира.

Клеточная теория – одно и важнейших биологических обобщений, согласно которому все организмы имеют клеточное строение.

Замечание 2

Клеточная теория совместно с законом превращения энергии и эволюционной теорией Ч. Дарвина является одним из трёх величайших открытий естествознания $XIX$ века.

Клеточная теория кардинально повлияла на развитие биологии. Она доказала единство живой природы и показала структурную единицу этого единства, которой является клетка.

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория имела значительное и решающее влияние на развитие биологии, служила главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основание для объяснения родственных взаимосвязей организмов, для понятия механизма индивидуального развития.

Клеточная теория, возможно, является важнейшим обобщением современной биологии и представляет собой систему принципов и положений. Она является научной подоплекой для многих биологических дисциплин, которые изучают вопросы строения и жизнедеятельности живых существ. Клеточная теория раскрывает механизмы роста, развития и размножения организмов.



error: Контент защищен !!