Отличие ассимиляции от диссимиляции. Какие типы биохимических реакций протекают в ассимиляции и диссимиляции? Смотреть что такое "диссимиляция и ассимиляция" в других словарях

ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ

ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ

(от лат. dissimilis – несходный и assimilis – сходный) – взаимно противоположные процессы, обеспечивающие в единстве непрерывный жизнедеятельности живых организмов; протекают в организме непрерывно, одновременно, в тесной взаимосвязи и составляют две стороны единого процесса обмена веществ. Д. и а. образуют сложную систему, состоящую из цепи взаимосвязанных биохимич. реакций, каждая из к-рых в отдельности является только химической, но к-рые в единстве составляют , обладающее биологич. природой. Противоречие Д. и а. определяет динамич. равновесие живого тела. Как открытая (см. Жизнь), должно, постоянно приобретая, столь же непрерывно тратить приобретенную энергию, так, чтобы не увеличивалась .

Д и с с и м и л я ц и я – процесс расщепления в живом организме органич. веществ на более простые соединения – ведет к освобождению энергии, необходимой для всех процессов жизнедеятельности организма. А с с и м и л я ц и я – процесс усвоения органич. веществ, поступающих в , и уподобления их органич. веществам, свойственным данному организму, идет с использованием энергии, высвобождающейся при процессах диссимиляции. При этом образуются (синтезируются) соединения, обладающие высокой энергией (макроэргические), к-рые становятся источником энергии, освобождающейся при диссимиляции.

Диссимиляция поступающих в организм питательных веществ, в основном белков, жиров и углеводов, начинается с ферментативного расщепления их на более простые соединения – промежуточные продукты обмена веществ (пептиды, аминокислоты, глицерин, жирные кислоты, моносахариды), из к-рых организм синтезирует (ассимилирует) органич. соединения, необходимые для его жизнедеятельности. Все процессы Д. и а. в организме протекают как целое. См. Обмен веществ , Жизнь и лит. при этих статьях.

И. Вайсфельд. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


Смотреть что такое "ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ" в других словарях:

    - (лат. assimilatio, от assimilare уподоблять). Уравнение, уподобление, напр., в фонетике уподобление соседних звуков один другому; в физиологии уподобление веществ, поглощенных животным, веществам собственного тела. Словарь иностранных слов,… …

    - [лат. dissimilatio расподобление] лингв. изменение, которое разрушает сходство и подобие звуков в слове. Словарь иностранных слов. Комлев Н.Г., 2006. диссимиляция (лат. dissimilatio расподобление) 1) иначе катаболизм распад сложных органических… … Словарь иностранных слов русского языка

    Ассимиляция - (от лат. assimilatio воспроизведение), анаболизм, процесс, в ходе которого из более простых веществ синтезируются более сложные (полисахариды, нуклеиновые кислоты, белки и др.), аналогичные компонентам этого организма и необходимые для его… … Экологический словарь

    Термин ассимиляция (лат. assimilatio уподобление) употребляется в нескольких областях знания: Ассимиляция (биология) совокупность процессов синтеза в живом организме. Ассимиляция (лингвистика) уподобление артикуляции одного … Википедия

    - (лат. dissimilatio расподобление). Замена одного из двух одинаковых или сходных звуков другим, менее сходным в отношении артикуляции с тем, который остался без изменения. Подобно ассимиляции, диссимиляция может быть прогрессивной и регрессивной.… …

    I ж. Изменение, нарушающее сходство, подобие одинаковых или сходных звуков в слове или в соседних словах; расподобление (в лингвистике). Ant: ассимиляция I II ж. Распад в организме сложных органических веществ, клеток, тканей и т.п. (в биологии) … Современный толковый словарь русского языка Ефремовой

    - (лат. assimilatio уподобление). Уподобление одного звука другому в артикуляционном и акустическом отношениях (ср.: диссимиляция). Ассимиляция возникает у гласных с гласными, у согласных с согласными … Словарь лингвистических терминов

    I Ассимиляция (от лат. assimilatio) уподобление, слияние, усвоение. II Ассимиляция (этнографич.) слияние одного народа с другим с утратой одним из них своего языка, культуры, национального самосознания. Во многих странах в… …

    I Диссимиляция (от лат. dissimilis несходный) в биологии, противоположная ассимиляции (См. Ассимиляция) сторона обмена веществ (См. Обмен веществ), заключающаяся в разрушении органических соединений с превращением белков, нуклеиновых… … Большая советская энциклопедия

Синтез веществ, идущий в клетке, называют биологическим синтезомили сокращенно биосинтезом.

Все реакции биосинтеза идут с поглощением энергии.

Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией(лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО 2 и Н 2 О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называютобменом веществ и энергии.Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

18 Аденозиндифосфат (адф) и аденозинтрифосфат (атф), их строение, локализация и роль в энергетическом обмене клетки.

19. Обмен веществ и энергии в клетке. Фотосинтез, хемосинтез. Процесс ассимиляции (основные реакции). Обмен веществ представляет собой единство ассимиляции и диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Фотосинтез -это процесс превращения энергии солнечного света в энергию химических соединений. Фотосинтез -это процесс образования органических веществ(глюкозы,а затем крахмала)из неорганических веществ, в хлоропластах на свету с выделением кислорода. Протекает фотосинтез в 2 фазы: световая и теневая. Световая фаза протекает на свету. Во время световой фазы происходит возбуждение хлорофилла путем поглощения кванта света. В световой фазе происходит фотолиз воды с последующим выделением кислорода в атмосферу. Кроме того, в световой фазе фотосинтеза протекают следующие процессы: накопление протонов водорода, синтез АТФ из АДФ, присоединение H+ к специальному переносчику НАДФ

ИТОГ СВЕТОВОЙ РЕАКЦИИ:

Образование АТФ и НАДФ*H, выделение O2 в атмосферу.

Темновая фаза (цикл фиксации CO2, цикл Кальвина) протекает в строме хлоропласта. В темновой фазе происходит следующие процессы

Из световой реакции берется АТФ и НАДФ*H

Из атмосферы - CO2

1)Фиксация CO2

2)Образование глюкозы

3)Образование крахмала

ИТОГОВОЕ УРАВНЕНИЕ:

6CO2+6H2O---(хлорофилл,свет)-С6H12O6+6O2

Хемосинтез – синтез органических веществ за счет энергии химических реакций. Хемосинтез осуществляется бактериями Основные реакции фотосинтеза: 1) окисление серы: 2H2S + O2 = 2H20 + 2S

2S + O2 + 2H2O = 2H2SO4 2) окисление азота: 2NH3 + 3O2 = 2HNO2 + 2H2O 2HNO2 + O2 = HNO3 3) окисление кислорода 2H2 + O2 = 2H2O 4) окисление железа: 4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2

20. Обмен веществ в клетке. Процесс диссимиляции. Основные этапы энергетического обмена. Обмен веществ представляет собой единство ассимиляции и диссимиляции. при диссимиляции, также подвергаются дальнейшим преобразованиям. Ассимиляция – процесс уподобления веществ, поступающих в клетку, специфическим веществам, характерным для данной клетки. Ассимиляция – эндотермический процесс, требующий затраты энергии. Источником энергии являются ранее синтезированные вещества, подвергшиеся распаду в процессе диссимиляции. Диссимиляция представляет собой экзотермический процесс, т.е. процесс освобождения энергии за счет распада веществ клетки. Вещества, образующиеся Все функции, выполняемы клеткой, требуют затрат энергии, которая освобождается в процессе диссимиляции. Биологическое значение диссимиляции сводится не только к освобождению энергии, потребной клетке, но нередко и к разрушению веществ, вредных для организма Весь процесс диссимиляции, или энергетического обмена, состоит из 3 этапов: подготовительный, бескислородный и кислородный. В подготовительном этапе под действием ферментов происходит расщепление полимеров до мономеров. Так, белки расщепляются до аминокислот, полисахариды – до моносахаридов, жиры – до глицерина и жирных кислот. В подготовительном этапе выделяется мало энергии и рассеивается обычно в виде тепла. 2) Бескислородный или анаэробный этап. Разберем на примере глюкозы. В анаэробном этапе происходит распад глюкозы до молочной кислоты: С6H12O6 + 2АДФ + Н3РО4 = 2C3H6O3 + 2Н2О + 2АТФ (молочная к-та) 3) Кислородный этап. При кислородном этапе вещества окисляются до СО2 и Н2О. При доступе кислорода пировиноградная кислота проникает в митохондрии и подвергается окислению: С3H6O3+6O2-6CO2+6H2O+36АТФ Суммарное уравнение: C6H12O6+6O2-6CO2+6H2O+38АТФ

Диссимиляция (катаболизм) - совокупность процессов, при которых происходит окисление сложных органических веществ и превращение их в неорганические (воду, углекислый газ, мочевину (простое органическое вещество) и др.), сопровождающееся синтезом АТФ, которая используется организмом в процессах ассимиляции и других процессах жизнедеятельности организма.

Главной функцией процессов диссимиляции в организме является перевод энергии из «неудобной» организму формы (энергии химических связей сложных органических веществ - белков, углеводов, жиров) в «удобную» форму - макроэргические связи соединения типа АТФ и АДФ, которых за счет процессов фосфорилирования легко переходит от одного соединения к другому. Это одна из биолого-экологических функций ассимиляции. Другой такой функцией является реализация круговорота веществ, когда органические вещества превращаются в неорганические, а последние вновь вступают в круговорот, участвуя в образовании органических веществ.

Перевод энергии из «неудобной» для организма формы в «удобную» происходит за счет превращения сначала АМФ в АДФ, а затем АДФ в АТФ.

Превращения аденозинфосфатов с образованием макроэргических связей выражаются схемами: АМФ + Н 3 РO 4 → АДФ + Н 2 O (поглощение энергии); АДФ + Н 3 РO 4 = АТФ + Н 2 O (поглощение энергии).

В результате процессов диссимиляции накапливается АТФ, которая затем используется в процессах ассимиляции, а энергия, заключенная в макроэргических связях молекул АТФ, передается на другие молекулы либо за счет процессов фосфорилирования (остаток переходит с молекулы АТФ на другие молекулы), либо за счет гидролиза АТФ и ее превращения в АДФ и фосфорную кислоту.

Организмы по характеру участия в процессах диссимиляции молекулярного кислорода делятся на анаэробные (бескислородные) и аэробные (кислородные). В анаэробных организмах диссимиляция осуществляется за счет брожения, а в аэробных - за счет в широком понимании сущности этого понятия.

Брожение - совокупность процессов разложения сложных органических веществ до более простых, сопровождающаяся выделением энергии и синтезом АТФ.

В природе наиболее распространенными видами брожения являются молочнокислое и спиртовое. Как способ «извлечения» энергии брожение - малоэффективный процесс: так, при молочнокислом брожении из 1 моль глюкозы образуется 2 моль АТФ.

1. Молочнокислое брожение - анаэробный процесс распада глюкозы до молочной кислоты. Выражается схемой:

С 6 Н 12 O 6 (глюкоза) → 2СН 3 СН(ОН)СООН (молочная кислота)

(выделяется энергия, под действием которой синтезируется две молекулы АТФ).

Этот вид брожения характерен для молочнокислых бактерий, в присутствии которых происходит скисание молока.

Молочнокислое брожение является одной из стадий процесса дыхания (в широком смысле) у аэробных организмов, в том числе и у человека.

2. Спиртовое брожение - аэробный процесс распада глюкозы, сопровождающийся образованием этилового спирта и углекислого газа; протекает по схеме:

С 6 Н 12 О 6 (глюкоза) → 2СО 2 + 2С 2 Н 5 ОН (этиловый спирт)

(выделяется энергия, используемая для синтеза АТФ).

Этот вид брожения происходит в плодах, в других органах растения, находящихся в анаэробной среде.

В природе наиболее широкое распространение имеет другой способ диссимиляции - дыхание, которое реализуется в окислительной среде, т. е. среде, содержащей молекулярный кислород. Процесс дыхания состоит из двух частей: газообмена и сложной последовательности биохимических процессов окисления органических соединений, конечными продуктами которых являются углекислый газ, аммиак (превращается в другие вещества) и некоторые другие соединения (сероводород, неорганические соединения фосфора и др.).

В обиходе дыхание рассматривается как процесс газообмена (это понимание понятия «дыхания» в узком смысле). Так, зоологи в организмах высших животных выделяют систему органов дыхания - в этих органах осуществляется газообмен, в результате которого из организма удаляется СО 2 , а в организм поступает О 2 (мы «дышим», т. е. выделяем углекислый газ и поглощаем молекулярный кислород).

В данном пособии дыхание рассматривается в широком смысле этого слова как совокупность процессов газообмена, перенесения газов по организму и совокупность химических процессов, при которых сложные органические вещества превращаются в неорганические, при этом энергия усваивается организмом в форме АТФ, синтезирующейся в процессе диссимиляции.

Итак, процесс дыхания в широком смысле состоит из двух фаз: газообмена и совокупности химических процессов освобождения энергии и синтеза АТФ. Кратко охарактеризуем эти фазы.

1. Газообмен.

Для одноклеточных и относительно просто устроенных организмов (как растительных, так животных и грибов) газообмен протекает на всей поверхности тела: кислород поступает в клетки, а углекислый газ выделяется в окружающую среду. У высших растений роль органов дыхания играют или устьица(листья), или особо устроенные поры (чечевички) в коре многолетних органов (стебли, корни), кроме того, корни поглощают кислород и выделяют углекислый газ корневыми волосками. У высокоорганизованных многоклеточных животных имеются сложно устроенные органы дыхания - это или жабры (у водных животных), или легкие (высшие животные типа Позвоночные), или система трахей (насекомые).

Рассмотрим газообмен на примере человека - представителя типа Позвоночные. Этот процесс протекает достаточно сложно и начинается в легких, в которых в капиллярах альвеол кровь, обогащенная СO 2 (венозная ), контактирует с воздухом, богатым кислородом (поступил в легкие во время вдоха), за счет чего в легких выделяется углекислый газ, а молекулярный кислород взаимодействует с гемоглобином крови, образуя соединение алого цвета - оксигемоглобин (О 2 вытесняет СО 2 из его соединения с гемоглобином). В полость легких диффундирует и СО 2 , содержащийся в плазме крови. Возникшая артериальная кровь по венам легких поступает в левое предсердие, а из него - в левый желудочек и аорту. Далее кровь по кровеносным сосудам разносится к тканям различных органов и через капилляры в тканях углекислый газ из тканевой жидкости (в тканевую жидкость СО 2 поступил из клеток) поступает в эритроциты крови, частично реагируя с оксигемоглобином, а частично растворяясь в плазме клетки. Молекулярный кислород диффундирует сначала в тканевую жидкость, а потом - в клетки. В результате охарактеризованных процессов в тканях образуется венозная кровь, которая из капилляров поступает в вены, а затем - в правое предсердие, правый желудочек, из которого через легочные артерии поступает в легкие и процесс повторяется.

2. Характеристика химических процессов окисления при диссимиляции.

Химизм «освобождения энергии», содержащейся в сложных биохимических соединениях, сложен и протекает в три этапа.

1 этап - подготовительный.

Этот этап протекает в любом организме и состоит в том, что сложные органические вещества превращаются в более простые ( - в смесь природных альфа-аминокислот; полисахара - в моносахара; - в смесь глицерина и жирных кислот). При протекании данного этапа выделяется небольшое количество энергии, которую организм практически не использует - она рассеивается.

2 этап - анаэробный.

Он представляет собой процессы брожения. Наиболее важным процессом брожения является молочнокислое брожение, которое можно изобразить схемой:

С 6 Н 12 О 6 (глюкоза) + 2АДФ + 2Н 3 РО 4 → 2 АТФ + 2Н 2 О + СН 3 СН(ОН)СООН (молочная кислота)

Этот этап необходим организмам для реализации их физиологических функций (совершение механической работы, перемещения организма в пространстве и т. д.). Кроме того, молочная кислота является веществом, вступающим в третий этап.

3 этап - аэробный.

Для осуществления этого этапа необходим молекулярный кислород. Он реализуется в особых органоидах клетки - митохондриях (их образно называют «энергетическими станциями клетки»). Аэробный этап представляет собой сложнейшую цепь превращений, в результате которых образуются неорганические вещества. Если превращениям подвергалась глюкоза, то схематически аэробный этап можно изобразить так:

2СН 3 СН(ОН)СООН (молочная кислота) + 6О 2 + 36 АДФ + 36 Н 3 Р04 6СО 2 + 42Н 2 О + 36АТФ

Две молекулы молочной кислоты взяты потому, что из одной молекулы глюкозы при молочнокислом брожении образуется две молекулы кислоты.

Итак, при полном распаде одной молекулы глюкозы до СО 2 и Н 2 О синтезируется 38 (36+2) молекул АТФ, что соответствует 55%-му усвоению энергии, которая выделяется при полном окислении глюкозы до указанных выше продуктов.

Завершая рассмотрение процессов диссимиляции следует отметить различие в газообмене растений и животных, а для газообмена растений - различие газообмена днем и ночью. Следует помнить, что и у растений и у животных ночью газообмен одинаков - организм поглощает кислород и выделяет в среду обитания СО 2 . Днем газообмен у растений состоит в том, что растение на свету поглощает СО 2 , а выделяет в среду обитания О 2 (у животных наоборот - выделяется СО 2 , а поглощается кислород). Из вышесказанного следует экологический вывод об особенностях жилища: в спальне не следует держать много растений (Обоснуйте почему).

Пластический и энергетический обмены клетки (ассимиляция и диссимиляция). В клетке обнаружены примерно тысяча ферментов. С помощью такого мощного каталитического аппарата осуществляется сложнейшая и многообразная химическая деятельность. Из громадного числа химических реакций клетки выделяются два противоположных типа реакций - синтез и расщепление.

Реакция синтеза. В клетке постоянно идут процессы созидания.

Из простых веществ образуются более сложные, из низкомолекулярных - высокомолекулярные. Синтезируются белки, сложные углеводы, жиры, нуклеиновые кислоты. Синтезированные вещества используются для построения разных частей клетки, ее органоидов, секретов, ферментов, запасных веществ. Синтетические реакции особенно интенсивно идут в растущей клетке, постоянно происходит синтез веществ для замены молекул, израсходованных или разрушенных при повреждении. На место каждой разрушенной молекулы белка или какого-нибудь другого вещества встает новая молекула. Таким путем клетка сохраняет постоянными свою форму и химический состав, несмотря на непрерывное их изменение в процессе жизнедеятельности.

Синтез веществ, идущий в клетке, называют биологическим синтезом или сокращенно биосинтезом. Все реакции биосинтеза идут с поглощением энергии. Совокупность реакций биосинтеза называют пластическим обменом или ассимиляцией (лат. "симилис" - сходный). Смысл этого процесса состоит в том, что поступающие в клетку из внешней среды пищевые вещества, резко отличающиеся от вещества клетки, в результате химических превращений становятся веществами клетки.

Реакции расщепления. Сложные вещества распадаются на более простые, высокомолекулярные - на низкомолекулярные. Белки распадаются на аминокислоты, крахмал - на глюкозу. Эти вещества расщепляются на еще более низкомолекулярные соединения, и в конце концов образуется совсем простые, бедные энергией вещества - СО 2 и Н 2 О. Реакции расщепления в большинстве случаев сопровождаются выделением энергии. Биологическое значение этих реакций состоит в обеспечении клетки энергией. Любая форма активности - движение, секреция, биосинтез и др. - нуждается в затрате энергии.

Совокупность реакции расщепления называют энергетическим обменом клетки или диссимиляцией. Диссимиляция прямо противоположна ассимиляции: в результате расщепления вещества утрачивают сходство с веществами клетки.

Пластический и энергетический обмены (ассимиляция и диссимиляция) находятся между собой в неразрывной связи. С одной стороны, реакции биосинтеза нуждаются в затрате энергии, которая черпается из реакций расщепления. С другой стороны, для осуществления реакций энергетического обмена необходим постоянный биосинтез, обслуживающих эти реакции ферментов, так как в процессе работы они изнашиваются и разрушаются.

Сложные системы реакций, составляющие процесс пластического и энергетического обменов, тесно связаны не только между собой, но и с внешней средой. Из внешней среды в клетку поступают пищевые вещества, которые служат материалом для реакций пластического обмена, а в реакциях расщепления из них освобождается энергия, необходимая для функционирования клетки. Во внешнюю среду выделяются вещества, которые клеткой больше не могут быть использованы.

Совокупность всех ферментативных реакций клетки, т. е. совокупность пластического и энергетического обменов (ассимиляции и диссимиляции), связанных между собой и с внешней средой, называют обменом веществ и энергии. Этот процесс является основным условием поддержания жизни клетки, источником ее роста, развития и функционирования.

Химические превращения веществ в организме являются частью сложнейшего процесса, называемого обменом веществ. Из окружающей среды человек получав питательные вещества, воду, минеральные соли и витамины. В окружающую среду он выделяет углекислый газ, некоторое количество влаги, минеральных солей, рганических веществ.

В процессе обмена веществ человек получает энергию, аккумулированную в продуктах животного и растительного происхождения, и отдает тепловую энергию в окружающее пространство. Так постоянно происходит обмен веществ и энергии с окружающей средой, посредством которого человек включается в общий круговорот веществ в природе. Обмен веществами между организмом и окружающей средой — необходимое условие существования живых организмов.

Усвоение, накопление веществ и энергии называется ассимиляцией. В ходе ассимиляции питательных и других веществ образуются белки, жиры, гликоген, строятся новые клетки. Образовавшиеся в процессе ассимиляции вещества подвергаются сложным химическим изменениям и при этом высвобождается энергия. Этот процесс называется диссимиляцией. Химические реакции, высвобождающие энергию, осуществляются в митохондриях клеток.

Процессы ассимиляции и диссимиляции не только протекают одновременно. Энергия, необходимая для переваривания пищи, переноса питательных веществ и их накопления (ассимиляции), образуется в результате диссимиляции. Значит, ассимиляция зависит от диссимиляции и тесно связана с ней. Ассимиляция и диссимиляция — единый процесс, протекающий постоянно в клетках и во всем организм процесс обмена веществ и энергии.

Обмен веществ с окружающей средой является не только условием существования организмов, но и их основным, отличительным свойством. Ф. Энгельс писал:

«Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка»

Процессы обмена веществ полностью подчиняются закону сохранения массы и энергии. Специально постав ленные с этой целью исследования показали, что количество энергии, образованной в организме, равно запасу потенциальной энергии, полученной вместе с пищей. Вес поступающих в организм и выделяющихся из него веществ одинаков. Но необходимо учитывать прибавку или потерю веса.

«Анатомия и физиология человека», М.С.Миловзорова

В состав тела человека входят многие химические элементы. Содержание некоторых химических элементов в теле человека: Элементы, обязательно присутствующие в организме: Кальций Фосфор Калий Сера Хлор Натрий Магний Железо Йод Микроэлементы с незначительным содержанием в теле: Медь Марганец Цинк Фтор Кремний Мышьяк Алюминий Свинец Литий В организме они присутствуют главным образом в виде солей и некоторых кислот….

Из общего обмена веществ 40—50% осуществляется в скелетной мускулатуре. Любая мышечная деятельность увеличивает обмен веществ в мышцах. При спокойном сидении по сравнению со спокойным лежанием он возрастает на 12%. Стояние увеличивает обмен веществ на 20%, а бег — на 400%. Причем хорошо тренированный к данному виду мышечной работы человек тратит на ее выполнении меньше энергии, чем новичок. Объясняется…

В регуляции и осуществлении обмена веществ участвуют разные отделы нервной системы. Обмен веществ и энергии, приспосабливающие его к потребностям организма, происходят под влиянием коры полушарий. Так, у тренированных спортсменов на стадионе и в спортивном зале газообмен повышается задолго до начала соревнований. Повышение обмена наблюдается и у болельщиков, несмотря на то что они только зрительно участвуют…

Образование и выделение продуктов распада Обмен веществ в организме заканчивается образованием продуктов распада. Они вырабатываются в клетках в результате тканевого обмена. К ним относятся углекислый газ, вода, органические вещества (например, молочная кислота), минеральные вещества — соли, железо и другие металлы. Организм освобождается от них через органы выделения. Помимо конечных продуктов, из организма выводятся выщества, образовавшиеся при разрушении отмирающих…

Выделение продуктов распада является последним этапом обмена белков, жиров и углеводов, очень важным для нормального функционирования и существования организма. Конечные и другие выделяемые продукты и некоторые вещества, введенные с лекарствами, накапливаясь в тканях, могут отравить организм. Через органы выделения они выводятся из организма. Главная функция органов выделения состоит в поддержании относительного постоянства внутренней среды организма,…



error: Контент защищен !!